Math 259A Lecture 4 Notes

Daniel Raban

October 4, 2019

1 Correspondence Between Homeomorphisms and C^* -Algebra Morphisms

1.1 Recap: Homeomorphism between X_M and Spec(x)

Recall our results from last time.

Proposition 1.1. Let M be a commutative Banach algebra (over \mathbb{C}). Then $\operatorname{Spec}_M(x) = \operatorname{Spec}_{C(X_M)}(\Gamma(x))$.

Proposition 1.2. Let M be a C^* -algebra, and let $M_0 \subseteq M$ be a sub C^* -algebra. Then $\operatorname{Spec}_M(x) = \operatorname{Spec}_{M_0}(x)$.

Theorem 1.1 (Gelfand). Let M be a commutative C^* -algebra.

1. If $\varphi \in X_M$ is a character, then $\|\varphi\| = 1$ and $\varphi = \varphi^*$.

2. $\Gamma: M \to C(X_M)$ is a *-algebra isomorphism.

Proposition 1.3. Let M be a C^* -algebra generated by $x \in M$ and $1.^1$ Then $\Psi : X_M \simeq$ Spec(x) via $\varphi \mapsto \varphi(x)$ is a homeomorphism of compact spaces.

Remark 1.1. Note that $\varphi(x) = \Gamma(x)(\varphi)$.

Proof. The map is surjective and well-defined by the first proposition above. Also, Ψ is continuous. If $\Psi(\varphi_1) = \Psi(\varphi_2)$, then $\varphi_1(x) = \varphi_2(x)$. But this implies that $\varphi_1(x^*) = \varphi_2(x^*)$. So $\varphi_1 = \varphi_2$ on all of M, as x generates M. So Ψ is injective.

¹Alternatively, we can say, "Let M_0 be the sub C^* -algebra of M generated by x and 1.

1.2 Correspondence between homeomorphisms and C*-algebra morphisms

Remark 1.2. If $\Delta : Z \to Y$ is a map between compact spaces, then we get a map $\Delta^* : C(Y) \to C(Z)$ given by $\Delta^*(f) = f \circ \Delta$. The map Δ^* is a a *-algebra homomorphism.

Conversely, if $\theta : M \to N$ is a morphism of unital C^* -algebras, we can view $\theta : C(X_M) \to C(X_N)$. Then there is a canonical $\Delta : X_N \to X_M$ such that $\theta = \Delta^*$ as follows. If $\varphi : N \to \mathbb{C}$ is multiplicative, then $\varphi \circ \theta : M \to \mathbb{C}$ is multiplicative. So $\Delta(\varphi) = \varphi \circ \theta$ is a well-defined map $X_M \to X_N$. Then $\Delta^* = \theta$. We denote this Δ by θ_* (so $(\theta_*)^* = \theta$).

Moreover, θ is surjective if and only if θ_* is injective and is injective if and only if θ_* is surjective. Thus, θ is an C^* -algebra isomorphism if and only if θ_* is a homeomorphism.

This is very important! It says that any homeomorphism between compact spaces corresponds to a *-algebra morphism between C^* -algebras.

Proposition 1.4. If θ is surjective, then θ_* is injective.

Proof. Let $\varphi_1 \neq \varphi_2 \in X_N$. Then $\varphi_1 \circ \theta \neq \varphi_2 \circ \theta$.

Proposition 1.5. If θ is injective, then θ_* is surjective.

Proof. We get that $\theta : M \to N$ is isometric, as $\|y^*y\|_M = \operatorname{Spec}_M(y^*y) = \operatorname{Spec}_N(y^*y) = \|y^*y\|_N$ since y^*y is self-adjoint; then the C^* -condition gives that $\|y\|_M = \|y\|_N$.

Take a $\varphi \in X_M$ and consider the corresponding maximal ideal $M_{\varphi} \subseteq M$. Then $N\theta(M_{\varphi})$ is a closed proper ideal in N (proper because it does not contain 1). Any maximal ideal M' containing $N\theta(M_{\varphi})$ has the property that its character $\varphi' = \varphi_{M'} \in X_N$ satisfies $\theta_*(\varphi') = \varphi$.

1.3 Continuous functional calculus

Let's be a bit more clear about a point made last lecture, using this viewpoint we have established.

Remark 1.3. Let M be a commutative C^* -algebra generated by x (so x is normal). Then $M \simeq C(X_M)$ via Γ . Note that since $\varphi(x) = \Gamma(x)(\varphi)$, using this identification, the map $(\Psi^{-1}) * \circ \Gamma$ sends $x^n \mapsto (z \mapsto z^n)$ and $(x^*)^m \mapsto (\overline{z} \mapsto \overline{z}^m)$. So for $f \in C(\operatorname{Spec}(x))$, we can define $f(x) := ((\Psi^{-1}) * \circ \Gamma)^{-1}(f)$. This is called **continuous functional calculus** for normal elements in a C^* -algebra.